PV on Lake House

Designing and Selling the Perfect Solar PV System

There are many elements involved in achieving this perfect design that is just right for the customer. If you know these elements, it makes the goal very attainable. The first one is to provide the customer with  what they want and need; these two may not be the same and the need may sometimes have to stand in for what they want. Everything else falls under this one heading. The list includes financial return, pride in ownership and self-sufficiency. It is an understatement that the PV system must be design and built to last the full expected lifetime with minimal problems; the workmanship has to be as good as it can be. The system should be designed to consider all costs to install and operate over its lifetime; the finical variables may change due to utility agreement changes over time and these possibilities must be considered up front as much as possible. The primary purpose of the PV system should be to provide power from a sustainable source, whether it is just a utility interactive system without energy storage or one that provides backup power during outages. Owning the electrical power is a powerful position to be in and it should provide the best benefit to the customer.

 

This is all pretty straight forward so why are there so many PV systems that are not perfect for the customer? Here are some reasons.

  • Customers are not well informed about the operating and cost parameters of PV systems. This fault falls partly on the homeowner and partly on the contractor.
  • Customers do not seek estimates from more than one contractor. This is a customer issue and it is usually because it is stressful.
  • Contractors sell what is popular rather than what is most practical. Giving the customer what they want is not always good for them.
  • Some contractors do not know what they are doing and should not be in the business. Systems are either uninspected or poorly inspected. There is insufficient oversight from jurisdictions having authority.

 

There are a great number of high-quality PV system installation companies who are doing a great job of providing well designed PV systems to customers so why are there any who are not.

In order to be a good solar PV contractor, you must do the following.

  • Effectively educate the customer about energy and how solar plays into it.
  • Strive to understand every aspect of the design standards and the codes that govern those standards.
  • Learn as much as possible about the financial parameters controlling the customers ownership benefit.
  • Always give the customer the best even if it costs you finically; it isn’t worth it otherwise.
  • Build a long-term relationship with the customer so that you can continue to provide them with good service.

 

Kelly Provence
Solairgen
www.solairgen.com

Battery Inverter selection

Solar Storage Battery Systems 

The quantity of new products entering the solar storage sector is growing at a fast pace. That can cause confusion with selecting a system; especially since there are many differences in how they are configured and operate. In this article I am going to break them down into categories and key differences to help simplify the process of selecting the best system for your needs. 

There are many ways to group the Solar Storage Battery Systems; the grouping I have chosen is not the only way to do so. I have grouped them as follows: (1) Stand-alone systems, (2) Multimodal systems, (3) Smart Multimodal systems. 

There are a multitude of battery inverters that fall in to the Stand-alone category.  

  • Many of them are low-cost single circuit inverters that are DC coupled with a charge controller to manage PV energy into the batteries. 
  • Several have a large capacity battery inverter that feeds an AC distribution panel with multiple branch circuits. These are designed to support a small cabin, backup power to a grid connected home, a large boat or a motor home. Most of these systems are DC coupled with a charge controller managing the PV energy into the batteries. One or two of these models can also be AC coupled to an interactive inverter. These larger inverters can be connected to the grid and/or a generator for load support; they are not able to sell excess energy into the grid.

Multimodal systems are similar to large capacity battery inverters plus they designed and listed to sell excess energy into the grid. These systems often have a controller where all to the system settings are adjusted depending on the capacity of the inverter(s), the battery bank and the battery charging parameters. 

  • The standard model uses DC coupled charge controllers to manage the PV energy into the batteries. 
  • Most of these inverters can be programed to control battery charge through AC coupling of an interactive inverter.  

Smart multimodal systems are the fastest growing category of Solar Storage Battery Systems. These smart systems have a controller that monitors solar production and energy consumption. The controller will control energy flow from all sources. It is possible to operate in self-consumption mode or another energy management mode. These controller/inverters are usually listed to comply with California’s CA Rule 21 and Hawaii’s HI Rule 14H; with these modes the controller/inverter can communicate with the utility to enhance grid performance. It is important to know the differences each manufacturer offers.  

  • They differ in that some can only be DC coupled, others can only be AC coupled, and a few can be either DC or AC coupled. 
  • Some of the ones with DC coupling also provide GFDI, AFCI and Rapid Shutdown for rooftop installations. Other do not provide these National Electrical Codd requirements. These NEC compliances are usually met with AC coupled systems since an interactive inverter is present and is usually equipped with these NEC requirements. 
  • Battery options are often limited especially if the systems is a UL listed Energy Storage Systems (ESS). If the system controller requires a high voltage Lithium battery, there are only a few to pick from. System that are designed for low voltage (48 nominal) usually allow for any lithium or lead-acid battery. If it is an AC coupling only ESS, lead-acid batteries most likely will not be allowed. 

With smart multimodal systems, it is important to consider all of the above-mentioned differences. My favorite system is one that offers the most options for connecting solar PV and for energy storage. The charts below show the key differences of several brands. 

Chart1

Chart2

 Kelly Provence
Solairgen
www.solairgen.com 

 

Issues With PV Cables on Residential Rooftops

Cable management is difficult with rooftop PV installations because the array is coplanar to the roof and it is difficult to see and access the cables once each module is in installed. There are two major issues that occur with these types of installations.

  1. Unprotected PV cables can be damaged by squirrels or other animals that will nest under the array and claw or chew the cables and connectors.
  2. Obstructions under or around the edge of the PV array can hinder drainage and cause leaks into the roof.

To address issue #1, good wire management is one of the best available defenses against squirrels and other nesting creatures. The NEC states that USE-2 (PV wire/cable) must be secured within 24” of a junction box and then every 24” of length. While this is adequate for other installations, roof mounted arrays need better support and protection for the cables. Every 12” to 18” is minimal to prevent drupes in the cable.

The picture below is of a ground mounted array where wire management is easy to achieve. It is exceedingly difficult to achieve this with a coplanar roof mounted PV array. Even with this level of wire management, a squirrel can still chew on the cables; they are still unprotected.

Underneath view

Wire management methods vary depending on the racking manufacturer but none of them fully protect the PV cables from squirrel chewing damage. Here are a few methods.

SnapNRack
SnapNrack uses their open rail system for wire management. The plastic clips secure the cables into the rail trough.

 

Generic cable clips that attach to the module frame.

Generic 1Generic 2

 

Cable ties (zip ties) These are convenient to use but they must be rated for the lifetime of the array.

Cable tiesCable ties

The problem with zip ties is with their strength and usage rating. The typical black zip tie may not have a sufficient rating for the lifetime of the PV module.

Extreme UV

Another code requirement is the minimum bending radius of USE-2 and listed PV wire. USE-2 has a minimum radius of 5x the diameter of the cable; that is about the curve of a large cup. PV wire usually requires a minimum radius of 8x the diameter of the wire; that is about the curve radius of a good hamburger.

Another method of protecting the PV array cables from damage is to screen the exterior of the array to prevent entry. There are several products on the market but I have heard stories where squirrels still found a way inside the PV array.

Array screen 1Array screen 2

To address issue #2, obstructions under or around the PV array can cause water to enter the roof. The screening could cause a problem if leaf debris reaches the top of the PV array. If leaf debris is not an issue, the screen may be a good solution.

Any time there is a possibility of leaf debris reaching the upper portion of the PV array, it is imperative that there are no obstructing debris from being washed asway. If leaf debris is present, it may be best to keep the array high above the roof and use the best wire management techniques without screens.

nest under PV array
Nest under a PV module
IMG_7291
Wires chewed by a squirrel

 

 

 

 

 

 

 

 

If there is not a possibility of leaf debris reaching the PV array, screening is the best method to prevent nesting creatures from getting inside the array and damaging the cables and connectors.

Kelly Provence
IREC Certified Master PV Trainer
Solairgen School of Solar Technology
800-262-7560
www.solairgen.com

Styrofoam packing

Shouldn’t Packaging of Renewable Components be Renewable Too?

As far as pure energy goes, it doesn’t get better than solar energy. Photovoltaic (PV) energy technologies are improving and growing at an impressive rate. This industry hopes to be a major source of electrical energy on Earth in the not-too-distant future. At the rate it is growing, that will probably happen within 10 to 20 years. That sounds great but there is a dark side to the PV industry’s growth and it is in the way materials are facilitated to the complete installation of a PV system.

Before I talk about this environmental dark side of the solar PV industry it is worth noting its bright clean side. If all the energy required to manufacture and facilitate the installation of the PV system was derived from fossil fuels, it would take only two years of operation to offset that non-renewable fossil-fuel energy. As renewable energies become more dominant that figure will become shorter. Ultimately the process of offsetting the non-renewable, fossil-fuel energy required to manufacture and implement a PV system could be close to zero. Unfortunately, there is still an environmental dark side that has not been offset. This has to do with the negative effects of the front end and back end of product manufacturing, mining and packaging.

On the front end, mining is necessary to get the raw materials to manufacture PV cells, PV modules, inverters, batteries, support structures and electrical conductors. It is possible to reduce the effects of mining by using materials that are more plentiful in the Earth’s crust but there will always be a requirement for mining. It is also possible to recycle materials that are currently reaching the end of their useful life. The obstacle here is usually financial since it is often lower cost to mine for new raw materials than to recycle them from previously manufactured products containing these same raw materials. Interestingly, even if it takes less energy to recycle a material, it may be more difficult and more expensive to completely facilitate the recycling process. When recycling is disadvantaged by these economics, tax incentives or subsidies should be put in place to make recycling more lucrative. The back end of manufacturing is packaging.

Almost every manufactured product is packaged before being sent into the marketplace.

PV modules are packaged on wooded pallets with plastic separators. They are often wrapped in stretch plastic or they are packaged in pairs with cardboard. Plastic is a forever-material that is almost completely non-recyclable. Wood and cardboard-based packaging is much more recyclable. Its recycling should be encouraged though tax incentives or subsidies.

  • Inverters are packaged in cardboard and protected internally with either Styrofoam, polystyrene or corrugated fiberboard. Styrofoam and polystyrene are forever-materials that are non-recyclable and should not be used. Paper based products like cardboard should be used instead.
  • Batteries are typically packaged the same way as inverters but primarily with cardboard.
  • Small balance-of-system components (BOS) are shipped in cardboard, plastic and they use bubble wrap and foam peanuts to secure the items during shipment.

Inverter packaging

Packaging PV products with forever-products that are non-renewable and non-biodegradable is completely unacceptable. The purchaser of these products has a lot of influence over how these products a packaged; the best action is an email or phone call to the sales associate for the manufacturer as well as to the distributor of the products. Solar PV is a renewable product industry, we need to remove non-renewable, non-biodegradable products from the packaging process.

Kelly Provence
Solairgen, Inc.
IREC and NABCEP Certified PV Trainer
www.solairgen.com
706-867-0678
800-262-7560

Solar Training Education and Learning Text

COVID-19 Assistance

Everyone is feeling the effects of the corona virus, and most people are concerned for their family and friends and anyone affected by COVID-19. It has adversely affected the health of many and the economic position of almost everyone. We understand that many find themselves in a position of reduced income, a surplus of time, and a restricted social agenda.

Solairgen would like to offer some assistance by reducing the costs of our online training courses until this health crisis is contained. If you have time and you would like to expand your career, or get some continuing education credits, we hope our price reductions will make it easier to achieve.

For the months April and May, we are reducing the prices listed on the website for online classes by 40%. Your discount will be shown and taken at checkout.

Stay safe.

Mr. Kelly Provence
Certified Master PV Trainer
Solairgen School of Solar Technology
706-867-0678

www.solairgen.com

 

Dunkelflaute

At first glance I thought this term was describing a dark German beer that had lost its carbonation. I was wrong but it is actually almost as bad. Dunkelflaute translates to “dark doldrums” and refers to a period when there is no sunlight or little wind for renewable energy generation. This is particularly serious in areas where solar and wind energy provide a substantial portion of electrical energy generation and is even worse at latitudes above 40˚. Germany faces this problem on a regular basis but are very creative in the ways they deal with it. The first solution may appear to be batteries or other means of storing electrical energy which is a partial solution; they also store energy by other means and incorporate smart energy efficiency.

There are solutions that don’t include conventional energy sources such as nuclear and fossil fuels, and thermal energy (steam driven generators) has been the workhorse of the electrical energy industry for the past 100 years. Electrical energy from renewables can be converted to thermal and stored for a short period of time. Electrical energy can be converted to any number of energy stores such as water reservoirs for hydroelectric and compressed air for air turbine generators. It is also possible to convert renewable electrical energy to hydrogen through electrolysis. This process is fairly easy but storing it as a condensed fuel is energy intensive. Smart energy efficiency is another way to reduce dependence on electrical energy when it is in short supply.

Smart energy efficiency sounds good and it is very doable in this age of smart computers but in order for this to work, we have to give up at least some privacy. Every appliance that uses energy will need to be electronically visible and controllable by the smart energy network (SEN). In the U.S. we are seeing this occur with the new listing for interactive inverters. They will be smart in their own accord with electrical energy fluctuation and controllable by the utilities for further control features to make the electrical grid more reliable. California and Hawaii have already implemented these rules and the rest of the U.S. will follow within a few years. Home monitoring of electrical circuits is becoming an affordable norm. It is reasonable to assume that these devices will eventually be required to communicate with a smart energy network. Everything that uses energy will communicate with the network. This may sound futuristic but it’s not and I don’t think it will turn into some dark dystopian landscape of existence where machines control humanity.

A more conservative but less desirable option is to use conventional energy sources such as nuclear or fossil fuels for base level energy demand. Nuclear would get the vote if CO2 emission reduction is the primary concern, but I think what we are going to see is a blend of renewable energy, energy storage, smart energy management and clean conventional energy production.

There is no way to prevent Dunkelflaute but we can progress to a cleaner and stable electrical grid – and the best way to prevent a good beer from losing its carbonation is to drink it faster.

On Grid Solar Farm

Working with Electric Utilities

Balancing the Needs of PV Customers with Utilities

Solar contractors and solar customers often find themselves on the adversarial side of utilities when interconnecting PV systems to the electrical grid. Most of the time this is due to a lack of seeing the other’s side and/or understanding of the other’s position.

Let’s first look at the utility’s position regarding PV systems. Many utilities offer incentives or encourage their residential customers to have PV systems installed on their properties. The reason for this is almost always for the purpose of appeasing the wishes of their customers. This an effort of goodwill because they know that electrical customers like the idea of energy coming from a clean renewable source and most of them also like the idea of owning their own energy. The benefit to the utility is not financial unless the PV system energy reduces load demand during periods when the cost to generate that power from other sources is high.

With residential customers, those periods are mostly in the afternoon and evening and then again in the morning as the sun starts to rise. This being the case, the PV systems with smart energy storage are the only systems that could financially benefit the utility as well as the owner of the system. They store the energy produced during the middle of the day and then feed it into the home and grid during the peak load periods.

With commercial customers the situation is different. The peak load period may be during the normal business hors of the day or 24 hours a day. These customers with PV systems may be shaving loads throughout the day or they may need to shift loads to a time of day other than the solar hours of the day. For the utility to benefit financially, a load demand study must be made for the specific customer. These customers with PV systems will also need energy storage for load shifting, peak load demand reduction and to provide consistent load support during climatic events that vary frequently during the day. The truth is that PV systems without smart energy storage do not save the utility money.

The exception to this would be with smart inverter technology that is controlled by the utility. California and Hawaii are both working through this process and it will become a more universal option in the very near future. However, these smart inverters and smart energy storage systems don’t address another issue for the utility. They understand how to regulate and shift energy supply with the energy sources they now have, the difficult task is how do they do this with customer-based power systems; the customer has far too much independence for their comfort. Customers would need to become liable to the utility for failure problems or let the utility have operational control of the system performance and operation.

Now let’s look at the customer’s position. The customer doesn’t have a choice when shopping for a utility; moving to another location is the only option if you don’t like the utility in your area. This is often a source of discontent for the customer. Customers depend heavily on electrical power for almost every appliance in the home and business. Natural gas, propane and fuel oil for heat are the exceptions.
Electricity seems expensive because we use so much of it; in fact, it is pretty cheap. In order to generate all your own electrical energy on-site, the cost will be excessive. In order to meet the cost per kWh from the utility, the PV system cost needs to be amortized over a 25-year period. Most residential customers do not appreciate how difficult it is to provide constant electrical power and how reasonable the price actually is. Commercial customers are more aware of this yet they would still like to be more independent for the utility if it is possible.

An important factor to both residential and commercial PV system customers is the return on investment. The customer wants the highest price for the kWh generated from their PV energy and they feel justified because they are generating clean energy and contributing to the reduction of conventional fuel sources with known hazards to our environment. This actually makes sense when looking long range. If the utility can absorb some of the cost of integrating PV energy into the grid, the industry will continue to grow and reduce initial coasts and therefore operating cost. Eventually the cost of PV systems with smart energy storage will be cheaper than any other energy source. It is rational to expect a public utility or a customer owned utility to invest in solar for the future by offering premium rates for the solar kWh. The problem with this position is that the rate to the customer will need to decrease over time with greater solar penetration, otherwise the investment from the utility will not have a positive return and the cost of electricity will have to go up. This is a difficult point to make to customers; someone needs to educate the electrical customer on how this will work to their advantage. The salesman for the solar contractor is unlikely do it and the customer will be much less likely to trust that information coming from the utility itself.

Effective open communication between the solar customer, the solar contractor and the electric utility is essential. Avoid adversarial positions and look for positions that benefits each entity.

 

Kelly Provence
Solairgen School of Solar Technology

 

Reliable Resources for New Solar Contractors

Online information is abundant these days and misinformation tends to dominate many or most search parameter queries. This seems normal and the information appears to be free but it really isn’t. Usually it’s either written to attract people to buy a product or to attract people to someone’s misinformation-laden ego. Either way, it is difficult to filter the good information from the bad. The purpose of this blog is to provide some basic sources of reliable information for the new solar contractor.

Below I’ve listed the resources needed and information to be a well-informed, competent solar contractor.

  1. Training for the solar contractor. Knowing the design and installation trade and standards is most important and it can be achieved through good accredited training providers and certified trainers. If the training provide is not IREC accredited with IREC certified trainers, don’t waste your time with them, https://irecusa.org/. The only exception to this is manufacturers of solar equipment. They will provide good training, but only on their own equipment.
  2. Suppliers of solar equipment. There are many suppliers of solar products and they all differ in the range of products and depth of support they provide to their customers. Small to medium scale PV contractors will need suppliers who offer a wide selection of products from several manufacturers. Large scale contractors may go straight to the manufacturers. Follow the link provided below and select your country. They list wholesalers and distributors of solar products. https://www.enfsolar.com/directory/seller

  3. Leading solar equipment. One way to determine which solar equipment to purchase is to look at a leading resource such as EnergySage. They have a solar panel database with consumer ratings, https://www.energysage.com/solar-panels/. They also have an inverter database with consumer ratings, https://www.energysage.com/solar-inverters/ and a database on batteries as well, https://www.energysage.com/solar-batteries/. If you would like a more comprehensive list of solar equipment, go to the California Energy Center’s (CEC) data base, https://www.gosolarcalifornia.org/equipment/index.php. You can also review the products that the leading suppliers carry; this may be best since this will be your primary resource.
  4. Solar energy resource data. There is only one source for historic solar resource data and that is the National Solar Radiation Database (NSRDB). It has been developed from data collected by NREL, NASA and NOAA over the past 50 years. There is no other resource that can provide this data. The best tool to calculate solar irradiation for a tilt and azimuth of a specific site is PVWatts developed by NREL https://pvwatts.nrel.gov/. Several companies and organizations use this data in their shading analysis tools. If you use one of these tools, check to verify that their irradiation data is from the National Solar Radiation Database.
  5. Financing for the customer. The list of lenders can be long since the solar industry is growing at a rapid pace and has been providing owners a good return on investment. A good place to start is with the list on the EnergySage website, https://www.energysage.com/solar/financing/loan-providers/.
  6. Certification and licensing. These terms should not be confused. Certification is an industry merit that is earned by very competent solar workers; the organization that tests individuals and issues certifications is the North American Board of Certified Energy Practitioners, https://www.nabcep.org/.  The certification adds value and credential to the individual and solar contractor. Certification is often required by solar PV system owners and/or utilities who are offering a financial incentive to their customers. Licensing is a requirement by the state and is a separate issue. The purpose of licensing is to make sure contractors have met the state requirement for competence in their field of construction. A licensed electrical contractor is responsible for all the electrical work performed on the solar installation. The license holder must be a permanent part of the solar company such as an employee or partner.

Kelly Provence
Solairgen School of Solar Technology

 

Residential Solar PV Ground Mount System

Starting a Solar PV Installation Company

Like any new adventure, starting a solar PV design and installation company seems simple at first and then as you learn more about it, the more complicated it gets. If you are already a construction contractor, it is a lot easier to see where you are going; if not, it can be a difficult undertaking.

The first major obstacle to overcome is knowledge about the solar PV industry. Most people start by browsing the internet. There is an almost endless abundance of material to be found when you start your search. As with all internet searches, some of the information is good, some bad and some has nothing to do with what you really need to know.

Costs are a major consideration. The initial investments can be high. You must purchase the necessary equipment and tools to get the job done. You will learn which tools are essential when you are taking the training classes. The basic tools can start as low as $1000 and go up considerably depending on the scale of solar PV systems you plan to install.

It isn’t a bad idea to work for someone else for a while so you can learn the ropes under the supervision of someone who has already gone through this process; this is a good idea if you are not already a contractor. Even if you are a licensed contractor, it can be a good idea to sub-contract the first few installations to an experienced solar contractor. You can learn a lot from this method even if you only break even on the jobs.

I recommend finding an accredited school that offers an introductory course to PV design and installation. Some state technical colleges have solar PV included in their electrical programs but most do not. The best source of education in this field is a school that is accredited specifically for the solar PV technology through the Interstate Renewable Energy Council (IREC). If the school is not accredited, don’t waste your time with them. Taking this entry level course should provide you with enough information about the industry so you can determine if you want to continue, and in which direction you will want to go next.

Once you have completed the basic solar PV course, the next steps will be more obvious to you. If you are a contractor, you are already registered with the city or county as a contractor. If not, you can get a business license with the city or county where you plan to do business; it is a simple process and the fees are usually nominal. Once you have your business license, you can apply to one of the many distributors who sell all the solar products you will need. Not all distributors require you to have a business license to purchase from them, but the better ones do.

Most states require that you or someone within your company be licensed through the state for the type of work you will be providing to the customer. A licensed general contractor meets the requirements, but you will need to hire a licensed electrical contractor before the installation begins. If the owner of the business is not a licensed contractor, either general or electrical, they must meet the state requirements by hiring a licensed contractor. Most states require this license holder to be a permanent employee, not a subcontractor.

Now that the local and state license requirements have been met, you should consider insurance options and requirements. If you hire employees, worker’s compensation is required by law. If everyone who works in the company is a partner, it is not required. However, if you sub-contract under another contractor, they will require it even if it doesn’t cover you.  Liability insurance is also a good idea and is required by most customers. The amount of liability insurance should be balanced with your actual liability if something should go wrong on one of your jobs. However, some commercial contracts will specify the minimum amount of liability insurance.

If you have gotten this far, you will want to advance your knowledge with solar PV system design. If you are a contractor, you know that there are two ways to learn advanced principles, through formal education and by making mistakes. I recommend formal education to lessen mistakes. There are two primary sources for advanced level training; they include advanced online and hands-on courses offered by IREC accredited schools and manufacturer’s training resources.

Manufacturer’s provide design and installation videos and webinars for their products alone, ignoring other products on the market. They often combine the sales aspect with the technical design during webinars and a lot of their installation videos are very educational but, limited to their own best interests.

The quickest and best way to get comprehensive advanced training of design and installation principles is by taking advanced level courses from an IREC accredited school. The benefit is they are impartial when it comes to the market products, so your education is broader which will build your confidence and abilities for when you are on your own.

Your first installation is the point where the risks jump to a high level so make it easy on yourself and first do an installation on your own property or the property of an associate. You are bound to make a few mistakes with the first few installations, so it is a good idea to keep the stress and liability as low as possible in the very beginning.

In review, first estimate the financial investment to get started, second educate yourself on the basics of solar PV design and installation, third get a local business license, fourth address the state contracting license requirements, fifth secure your insurance needs, sixth get advanced level training and experience on solar PV systems and finally acquire the necessary tools and equipment to properly perform the job.

Kelly Provence
Solairgen School of Solar Technology

 

Correct Sizing of a PV Array

Residential Solar PV Ground Mount SystemThe question of optimum PV array size is the first question to be answered when designing the PV system. There are several factors that have to be considered to arrive at the best size. The customer budget, the available area for the array and the purpose of the PV array are always primary considerations. The budget is usually the most flexible since the system can be financed. The second may be difficult to get around if the location options are limited and restrictive. The third part is where most mistakes are made. There are generally two types of systems, (1) stand-alone and (2) utility grid interactive.

The stand-alone system must be designed to serve the electrical loads throughout the year. The PV array is usually sized to serve the loads in the month with the highest ratio of electrical load demand verses available solar energy. As long as the electrical load demand is known and the solar resource is known, the calculation is made for each month of the year (Avg. daily loads kWh ÷ Avg daily insolation ÷ Power conversion efficiency % = ratio) The ratio is the exact size of the PV array necessary to offset 100% of the energy consumed in that critical design month. The hard part is usually determining the kWh of electrical consumption.

The stand-alone system can be off-grid with generator backup or grid supported. If it is grid supported a portion of the house electrical loads are served by the stand-alone system. The PV array is sized for the stand-alone portion of the house.

The graph below show a typical PV system output capacity compared to the electrical consumption for each month of the year. The PV array is exaggerated in size to cover the worst ratio months of the year.

Graph 1

Grid interactive systems must consider how much power can be fed into the electrical system and remain compliant with the utility interconnection agreement and the best power offset value. The most common interconnection agreement is Net Metering for the billing cycle. It is typically set to offset up to 100% of consumption with solar PV generation during the monthly billing cycle. Energy generation in excess of 100% is usually compensated at avoided cost, about 1/3rd the rate of retail. The obvious objective here is to not generate more than is consumed for each month of the year. The challenge is to project generation and compare it to consumption throughout the year.

The months that usually control the PV array size are in the spring and fall. We consume less energy during these periods because of the reduced need for heating and cooling. Coincidentally, these are usually the best two periods for solar PV generation because of clear skies and lower temperatures, April and May are typically the best generation months.

The graph below shows the typical electrical usage for residential customers. The PV system that is designed to offset 60% of the annual electrical consumption is generating 100% of that consumption during the month of April.

Graph 2

A third type of system is a self-consumption type system that requires energy storage and is designed to connect to the grid but not sell into the grid. The PV array size usually follows the same rules as the interactive guideline above, but it can be more complicated and requires a smart control system with consumption and generation metering to keep everything in check.

It is OK to oversize a stand-alone system but with interactive systems keep an eye on the low-consumption vs. high generation months.

Kelly Provence
Solairgen
www.solairgen.com

706-867-0678
info@solairgen.com